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3. Schrodinger’s Equation-11

Applications of Schrodinger’s Equation

1. Introduction

Though. Schrédinger’s equation has its limitations that we shall discuss later. the applications
of Schrédinger’s equation are many. For the present discussion we consider the following
prominent applications of Schrodinger’s equation: (i) the case of step potential; (ii) the case
of potential barrier; (or analogous to infinitely deep potential well). and (iii) Sommerfeld’s
model of free electron gas. We would discuss other applications of Schrédinger’s equation

including its application to understand the *Hydrogen atom" later in relevant spell of lectures.

2. Schriodinger’s Equation and the Problem of Step Potential

The case of ‘step potential” is a one-dimensional problem. To be precise it could be defined
as a problem wherein an object or a particle is moving along X — axis and it suddenly finds
an obstacle that we call a step barrier whose potential height is greater than the energy of the

f particle. We can picturize this problem schematically as follows:

f Y

Region-2

¥, (x)

v

)

a8

Fig. 3.1
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Let’s consider Schrodinger’s equation for this one dimensional case in the region-I and II as:

. MN\(x) 8z’m
Region - —L~7 =0;
j axz i h2 E\.IJ](X) 09 (3])
87%m
where, o E =k (ler). (3.2)
; Hos (o) 87°m
Reglon—ll.?+7—(E—Vo)‘{’2(x)=0; (33)

87°
where, .| hz’" (E=Vy) = ky(ler). (3.4)

Thus, Schrodinger’s equation and its solution for the region-I are given as:

MN(x) 2
?4—/\7' =0, (3.5)
with W Go)= Al ¥ R ot (3.6)

~ here, the first term in this expression represents incident or the forward moving modes

whereas the second term in this solution represents rebound or the back scattered modes.

Similarly, Schrédinger’s equation and its solution for the region-II are given as:

o, (x
wﬁg).{.k;'{)z(x):o’ (3.7)
with, W, (x) = 4,e™* + B,e "% ; (3.8)

the first term in this expression represents incident or the forward moving modes whereas the
second term in this solution represents rebound or the back scattered modes. However, one
can argue that if there is no further obstruction or barrier the state function need not have any
term representing back scattered modes. Consequently, the state function in the region-l1

simplifies to:

' I ;
¥, (x) = dye’. (3.9)
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In order to mvestlgate that the partlcle remains in the region-

[ or transmits in the region-11 we

determine the probability of rebound or reflection R and the transmission 7. In various

descnptlons R is referred as reﬂectance or coefficient of reflection and 7 is referred as

transmlttance or coefficient the transmission. To determine R and 7. we dlSCUSS the

Schrodlnger s current in the two regions as follows:

|

B i in (0¥ o
Region'=1:7, = (wignp —-VY¥,'¥ Np/S kg tie | :
g‘g‘. 1/ 2(1 | 1 1) 2m [y T
and :
Region~1II:J, =—i(‘~P2V‘PZ V\PZLPZ) U ‘Lp;ai_a_%_%

2m Ox Ox
Eq. (3.10) upon simplification gives us:

=i hk (AIAI -B;B|)=J/++.J,_(let);

{

where, we identify the forward moving current J,, and reflected current J,_ as:

‘J1+[': h: (A Al)

and W o
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7= Jus by
St S A R (3.16)

with an overall condition that sum of the probabilities of reflection an transmission follows:

R+T =1.

(3.17)
Thus, to determine R and 7' we need to know the ratio that is relation between B, and 4,

and between v 4, and 4, respectively. For this we ought to solve equations (3.8) and (3.9)

analytically.

We argue that the state function in the region-II ‘¥, (x) is continuity of the state function

P (x) and therefore they must agree with each other at the junction x =0 as:

i(at x=0)="¥,(ar x =0). (3.18)

This gives us

Similarly, we argue that as the state function is differentiable too, the derivatives of the two

state functions should also agree with each other at the junction x =0 as:

bl .o,

Gy : (3.20)
ox al‘,\_*=0 ..ax ar x=0

such_thgt‘ St

| A

e

2

in

geq. (3.19) and (3.21) we get

{

Scanned by CamScanner



2, 2
PRl
A ki +ky|
and |
2
T=k_2‘ﬁ2_ 1% 2k k,
kil e+ k|

One can easily verify that, R+T=1.

3. Schriodinger’s Equation and the Problem of Barrier Potential

The case of “barrier potential® is also one-dimensional problem. It could be defined as a
problem wherein an object or a particle is moving along X — axis and it suddenly finds an
obstacle that rectangular barrier whose potential height is greater than the energy of the

particle. We can picturize this problem schematically as follows:

Region-3

3

regions-1. 11 and 111
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- 87°m
whe_re, T E=k|(let),

(3.25)

Region — I ;M i 87°m
2 7

(E—VO)‘“PZ(X)=0_ (326)

Now, if V, i :
ow, if Vo > E in the region-I1. we find that Schrddinger’s equation suitably modifies to

0¥y (x) 87im

A o
axz h2 (l() E)\‘PE(X)——O, (327)
where 87°m Vo =E) =k, (I =
2 hz 0 )— 2(@[). (3~28) %
: oV (x) 87°m ﬁ
Region — 11 : 6;2 u 7 E¥;(x)=0; (3.29)
872
where, -ZTmE =iki(let)s (3.30)

Thus. Schrodinger’s equation and its solution for the region-I are given as:

W a0 is

oY
———'gx)+kfky,(x)=o. (3.31)

ox - : :
with, ¥, (x) = A,e”“" + B,e"”‘"" : (3.32) |

as discussed earlier, the first term in this expression represents incident or the forward

moving modes whereas the second term in this solution represents rebound or the back

scattered mo‘des;

Similarly, SC}lfﬁdinger’s equation and its solution for the region-I1 are given as:

e Schrodinger’s equation is real for _th;f region-1I.
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Similar ly\, Schrédinger’s equation and its solution for the region-1I[ are given as:

o ()
3'2' -—klzlpz(x)=0.
o (3.35)
SR () = Ay Bye ik
' ' (3.36)

We now argue that if there is no further obstruction or barrier the state function need not have

any term representing back scattered modes in the region-111. So that the state function in the

region-111 simplifies to:
\PU(0) = Aze™. (3.37)

Transmission and reflection probabilities could be given by:

2
Rz;//_-zlﬂ
I+ Al

4
and L (3.38) 2
2 B

= S |43 : g
iR

In order to determine the transmission probability we ought to solve eq. (3.32). (3.34) and

(3.37) and ascertain the information about the ratio 741 .
|

As ‘discussed'earlier we argue that the state function in the region-11 ‘¥, (x) is continuity of

the state function \P, (x) and therefore they must agree with each other at the junction x =0
e

as ‘P, (at x = 0) = ¥, (at x = 0), which results into

i

i }
=4, +B,. ‘ (3:39)

".': ‘ !

¥ {

we ar_lgue that as the state function is differentiable too. the derivatives of the two
i i

'sfv's,‘Hduld also agree with each other at the junction v = 0 as

y
i

!
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e

iy =ik B, =k 4, — k, B,
or,

A -B =-—24, +lk—“k282.

k, 1 (3.40)

Also, one can argue that the state function in the region-II1 W;(x) is continuity of the state

function ‘¥, (x) and therefore they must agree with each other at the junction x=a

as ¥, (at x = a) =Y (ar x = a) . which results into

Azekzu o Bze—kzu a A}(:‘Ik'”. (341)

And similarly, the derivatives of the two state functions ‘¥, (x) and W, (x)should also agree

with each other at the junction x=a as

=

il R o R (3.42) %
Ox at x=a Ox at x=a ; =
=

which gives us 3;
szzekza '—szze_kza = ik|A3€'k‘a . (343) E::
Solving equations (3.39). (3.40). (3.41) and (3.43) would help us arriving at relevant :
probability of transmission. =

When we solve (3.39) and (3.40) we get

‘ . e D
AI' — l—il—(l -\f—l-z-'l' 1+££‘2_ __2"7
i D (3.44)
j k, | B
Bl : “1+l_1£2_ ilz.-}- l—l—z- '—2—.
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ik, | A
BNl | 3 phia ,~ka
Az kz j ) ¢ 3
B 1 e ik_] ﬁelklae‘,kzu . (345)
2 ; 2 %

By putting these values of 4, and B, in the expressions of 4 and B, in eq. (3.44) we get

3 7 . ; ,
A= (1 —I—kl)(l +%)e"“ae—k2” +(1+ 111:2 ][1 —Z‘—')e"“"e”z" %; (3.46)
| 2 |

2

ik 1ot e 0 ik ' :
B= |1 22 | 1o B fohaphon o) - 22 1o g | s (3.47)
k, ks k, k 4

o p : ) S
In order to know the transmission probability, we obtain an expression of —; from eq. (3.46)
|

3
y

e R

A, 4o~ ™

i : (3.46)
' l—ﬁz— 1+l—k—' e+ 1+£(ci l—l—k—' el
kl k2 k] kZ

Similarly, know the reflection probability, we divide eq. (3.47) by eq. (3.46) and obtain an

—

expression ofg'— . Eq. (3.46) upon simplification gives
: !

¥ P ik,a —szl
A wd (3.47)
i k2 k‘

VA .
ko i) e LD i = ——
k, ks, Ky
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B 8 Py
= -2! ;%z‘m(lo—m)

— )_Zkla st /7:

=

-l
4

Which decreases with passage in space, but. it is- surely

non-zero.

3.1. The Case of o Decay and Tunnel Effect

Let us consider the phenomenon of emission of o particles from the nucleus of Uranium
238 2 .

Us,” atom. The potential height of the well of Nucleus is ~ 26 MeV ie. « particle needs

energy greater than or equal to 26 MeV . Whereas, the energy of the  particle in Uranium

nucleus is only ~4-6¢l . Logically, the @ particle could never come out of the nucleus.

But. emission of & particles from nucleus is a reality. This phenomenon could be understood
only by means of “tunnel effect”.

We can understand the phenomenon of @ particle emission schematically as follows:

[ 26ev =
=
=
=

'l-f_-l. - g e me =R = I NT
' -
a(~deVil ] ________ S :
i [ ! 2
17.5 Feyh X :

1

=IFFEE

Barrier Region
(Coulombic Attraction of Nucleus)

R —

Fig. 3.3: Schematic representation of ¢ particle emission from nucleus.

I m s emee
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ark: Let us understand that the baryi

_ rier is not made of
- . 0 ’ g l ¢ /
B s b f any hard stuff or bricks and

I is empty r /
pLy region! And yel, a particle finds it hard to pene

iS region.
g The barrier region is the region whe ol

rein coulombic attracti :
. , | raction of the nucleus
ulls the particle inward and does not let it escape f o

The probability o issi i
‘ y of transmission of & particle from the nucleus is given by the expression of
transmittance of “tunnel effect’ as follows:

(87~ m(i 0«111) ‘

2\\1

An example of & emission could be the decay of Uranium nucleus Ug® as follows:
U - Thy' + He, ! (3.50)
The size of the nucleus of Uranium is of the order- R L 1.2((238)! = 7.5 Fermi . Whereas,

the extent of the barrier region that is extent to which the coulombic attraction prevails is
manifold of this distance. Thus, the emission of « particle across this region requires an

extra-ordinary description. This is precisely the cunnel effect that makes & emission possible.
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dectron Gas Moge) for Solid Metals

fi
merfeld made g significant contribution to the ‘free

electr : Sl
esstul explanation of N gas model” that led (o

umductlvnv and mobility”

of electrons and this finally
idea of Fermi energy and (s e s

a y "l $
application to the band theory of semiconductors’

43 , dre as
- follows: i

(1)

The mutual repulsion amongst electrons is almost non-existent.

(11) Electrons vital for conductions (also valence electrons) are assumed to be free to move

anywhere within the specimen with no change in their energy.

(iii) The (electric) field potential representing the attractive interaction of ions is assumed to

be completely uniform everywhere inside the crystal.

As an approximation. potential energy is neglected and the total energy of conduction

electrons is thus assumed to be kinetic energy only.

(iv) The potential energy of an electron inside the metal must be lower than that of an
electron outside the metal as the conduction electrons are not free to move outside of the

metal at room temperature.

Remark: In a simple free electron gas model the interior of metals comprises of a gas of
electrons ofien within a region represented by ‘box comprising of potential energy with depth
Vi (say).’

4.1. Ssmmerfeld’s Estimation of Density of States

: : l", “ i3

It inc_orpo,ra{tes application of Schrédinger’s equation to the particle in a cubical box.
Sanﬁerfeld‘applied the result of energy eigen-values as found in case of particle in a cubical
box to approx1mate the number of electronic states in a soup of electrons in atom of target

‘tcnal Thal is to say, Sémmerfeld estimated density of electronic states in an abstract

* 4
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Per unit v i
olume in for the given ¢
ectr

particle in a cub; on-gas as follows, Tj
FTs ENSIgy S
gen-values of th
()

Fig. 3.4 Sommerfeld’s model of octant of a sphere in n— space by a cube.

d by the cut out octant of the sphere is replaced by a cube with side equal to

ner O of the cube coincide with the cen
ncide maximally with the three flat

The space create
tre O of the

s of the sphere such that the cor

radiu
gonal sides with corner at O coi

sf)fﬁefe ahd the three ortho
es of the left over sphere.

i of a sphere in 71— space could be given as:
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states

Thus, to estlmate the number of states in a region equivalent to octant of this sphere, we

ought to consider one-eighth of this volume e, 1(4 T n3j
8

Where, value of n could be substituted from eg. Bk

Dola)
n= 2\/5(/7 J(mE)z ; (3.54)

Therefore. upon substitution of this value of # in the expression of number of states, we get

ME= e 2] i

: Sty oS ; 1 1
Since. an electron can live in two spin states + 5 and — S . we double the number of states

N(E)~as:
3
N(E) = 2[8)6“ [ ]( 252 (3.56)

N(E) 16f iy (E)2 (3.57)

( E)-=
‘ . | 0 , frst
But. this function represents only number of states that correspond to energy E . We thus, fi
ééfimate the number of states in the energy range £ +dE .
e i i < epar ize as:
Wéﬁ%b"v&differehtiate this expression with respect to energy £ and reparametr

3 il

3.58
N2 (m)2(E)?. S
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’function represents i
4 presents number of electronic states per unit energy per unit volume and truly
- qualifics to be a functi ; i i
q ¢ a function representing density of states. This is with the reason that later we
can estima er of states i
e number of states corresponding to any energy and in any energy range. We can
also write the expression in (3.58) as:
I 3
£ 82 :
Z=CE?; where,( = —= 2
j ot w(m)?. (3.59)

This expression in the eq. (3.59) is geometrically a parabola ag depicted in fig. 3.5,

<>
dE Er

|

Fig. 3.5 Tﬁe number of states as function of energy depicting Fermi energy level.

| . . . . . -t in
We now briefly discuss the idea of Fermi energy distribution function and accommodate 1
' it i ' Il those
the Sémmerfeld’s estimation of density of (electronic) states as 1t imperative for a

i inciple’ : i-Dirac Statistics.’
‘Pauli’s exclusion principle’ and hence Fermi-Dirac S

particles that obey
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particles that obey Fermi-Dirac
Statistics i e. particles th

at obey Pauli’s exclusion principle.
1

( !-5,—/_:‘/;] ; (3.60)
NS )

S(E) =

e

We briefly analyze this Fermi distribution function. Let us examine this distribution function

in the limit when 7~ 0 :

7 ] :{l. IRVBI=<UF dand 3.61)

QA= R

This is like behavior of a step-function. One can interpret this result as follows: All states are

filled below the Fermi energy level, whereas, above the Fermi energy level all states are

empty.

i ction of energy.
| i energy distribution function as fun 10
io.3.6: Ferml o
it 3"6 is T #0,and significantly high: and 1
perature 1S :
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PX : ‘ (3.62)

(3.63)

o
—7
U
&5
~
&
~
("1._

0

Sommerfeld estimated density of electronic states that proved to be very useful. This has
been succeslsfully applied to determine electrical conductivity and mobility and also to

describe band theory and semi-conductor Physics.

Remarks: .

1

(i) One might wonder how precisely an octant of a sphere can be represented by a cubical

box comprising of electrons? Frankly speaking, it does very well. The reason could be given

as. When box containing electrons is situated in a central potential with the centre of the

potentzal at one corner of the box, all electrons would be confined in a region like octant of

at electrons tend to live within a region that at most extends

gt Il/]ll/[/

the sphere ,wirhin the box such th
up 1o tﬁe radius of the sphere.

sity of states estimated would represent upper limit as the actual

(ii) In this case, the den
e slightly less than the volume of the

volume of the octant of the sphere would always b

equivalent cube.
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(b) Valence bang MaxXimum and Ferm;j level
(¢) Vacuum and Fermj level

(d) Vacuum and conduction band minimum

2,

Descriptive questions

3. What is Fermi sphere?

4. What is conductor of electricity? Describe on the basis of Fermi surface?

5. Imagine the nucleus of an atom to be a cube with side ~ 1.5 Fermi. Can we determine the

binding energy of a neutron with this fact? How? Analyze the remarkable proximity of this

result with the realistic case.

6. Calculate Fermi energy for Iron, assuming that each Iron atom contributes one electron to

the electron gas. You are given density of Iron pp, =8.94x 10° kg/m’ and its’ atomic mass

number A,, =56 amu.

7 For,I‘ron, Fermi energy is 11.1 eV and the its electron density is n, =17x10* perm’.

B ihd the electron density of a metal for which Fermi energy is 14.3 eV and identify the atom.
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